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Abstract. The structure of the stellar surface magnetic field is covered from
direct observation by many mixing processes. The discovery of the topographic
surface structure requires an inversion procedure but does not reveal the origin
of the magnetic field. Modelling of magnetic stars, however, has to start from the
generating magnitudes and is a matter of construction by a strategy of forward
calculation. The model of the star is fitted to the observed appearance of the real
object by variation of parameters and optimizing. The magnetic field strength
on the surface of the star — including the magnetic poles — is a derived mag-
nitude, which should not be taken as a parameter for modeling. At the present
time two versions of magnetic modeling are discussed: 1) expansion of spherical
harmonics, 2) magnetic charge distribution. Both methods claim for the applica-
tion of parameters, which determine the magnetic field. In this paper the question
is investigated, what the generating and the derived magnitudes of the magnetic
field are. Tracing back the observed spherical distribution of the magnetic field
to its origin, one is led to the eigen values as the solution of Legendre’s differ-
ential equation. We regard the eigen values as the generating magnitudes of the
magnetic field, the physical quantities of which are the constituents of any vector
field, namely the sources and vortices, from which the field originates. This in-
terpretation is substantiated by graphical representations of magnetic maps with
topographical features like poles — derived from the field-generating sources: the
virtual magnetic charges.
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1 Introduction

The magnetic field of a star can be observed only in integral light radiation, which makes the recognizability
of any details by many information deforming processes impossible. For the reconstruction of the original
surface distribution from the final observational values all these processes have to be inverted.

The difficulties bound to the generally ill-posed inverse problem are well-known and have been considered
by Khokhlova et al. (1986), who investigated at first the distribution of chemical elements over the star’s
surface by Doppler imaging and later, the magnetic field structure. Nevertheless, the inversion method has
been developed successfully by Khokhlova herself and her followers (Piskunov 2000, Kochukhov 2003). The
result of such an inversion of observational magnetic field data is a topographic distribution of the magnetic
field over the surface with spotty character. The cartographic map of the field structure is still a representation
of comprised observation. Not regarding the very valuable informative result, it is not clear at once, whether
the often found complicated structures are the magnetic field itself or have they to be attributed to the
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distribution of chemical elements too. Here ends the reduction by inversion. A further reduction to the origin
of the magnetic field would be very doubtful.

In contrary to the inversion, a straightforward calculation can be carried out in any case. Assuming
physically reasonable conditions, models might be constructed, which are determined by parameters. A model
is a simplified abstraction from the complexity of the real object. Therefore, the choice of such parameters
is very important, because they are the intrinsic magnitudes of a causal process, from which any outward
appearance is derived.

2 Modeling of stellar magnetic fields

A model of the magnetic field in a star needs at first a concept where it is coming from. The reduction of
observations mark the magnetic poles as conspicuous topographical points, which determine form and time
dependence of the phase curves of the integral magnetic field strength. Since we observe only the magneto-
informative atmosphere, it seems to be obvious to take the magnetic field strength and the coordinates of
the poles as parameters.

However, the field as a physical quantity of continuity cannot be generated in the surface layer of the
star. Thus, we expect its origin either in the interior or the exterior of the star. So we ask for the intrinsic
parameters of a stellar magnetic model. In any case, suitable parameters are needed, which reflect the essential
characteristics of the physical conditions.

In the past, two versions of modeling stellar magnetic fields have been presented, which we will summarize
briefly.

2.1 The Magnetic Multipolar Expansion (MME)

The modeling method based on a multipolar expansion of spherical harmonics gives an analytical description
of a function on the sphere, which is — in case of a magnetic star — the distribution of the magnetic field
strength over its surface. The coefficients of the expansion (Legendre polynomials) are varied so, that the
surface distribution will be fitted to the observation. The physical meaning of the coefficients needed for
the analytical formulation is not explained. From the mathematical point of view, the coefficients are the
parameters of the spherical functions. Because of the complicated mathematics of Legendre functions the
expansion is extended usually only up to the second degree, the quadrupole. A truncated expansion can
give the main view of the star’s map with the topographic sites of the poles, but it fails to describe a finer
structure. The calculation of the surface field distribution by central dipoles, quadrupoles, etc. is restricted
to the surface of the sphere. The magnetic surface field of a decentered or an external dipole cannot be
calculated. The multipolar expansion method of modeling is an interpolating and approximation procedure
for fitting and informative compressing of the observational data to an analytical representation. In this sense,
it is highly developed and useful for the practical reduction of observational facts, but it does not give direct
information about the origin of the magnetic field — that means, the underlying physics.

The modeling of magnetic fields in stars using Legendre’s spherical functions has an old history. The
first who used them for the formulation of the magnetic field structure on the surface of a star was Deutsch
(1970). Further, we refer here to the papers of Oetken (1977, 1979), who modelled the star as an equatorially
symmetric rotator. Oetken relates to Krause & Rädler (1980), who calculated the magnetic field structure
of a star as generated by the action of a dynamo. The solution of the hydromagnetic differential equations
of the dynamo is displayed as a series of Legendre functions. Of special interest are the eigen values as the
solution of Legendre’s differential equation, which prove to be the generating magnitudes of the magnetic
field. Thus, the dynamo model is physically founded and leads immediately to an analytical description by
spherical harmonics.

Spherical harmonics constitute also the mathematical basis of the modeling method of Bagnulo et al.
(1996, 1998, 1999, 2001), which has been applied to a large number of magnetic stars. It comprises the
statistically straying measuring values to a small set of parameters and gives a forecast of the phase curves
and the line profiles for all modes of polarized light. The reduction yields field strength and coordinates of
the magnetic poles on the surface, which are adopted as parameters.
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2.2 The Magnetic Charge Distribution (MCD)

The MCD-method of modeling is founded on a theorem of the potential theory, according to which all
potentialfields can be constructed as linear aggregates of numerous fields of point-like sources. The vectorial
magnitude field strength is derived from the potential by the differential operator grad (gradient) or in the
case of a vector potential by the differential operator curl (rotor). A calculus of the differential geometry
states that all spatial vector fields can be built up by linear compilation of the fields of numerous sources
and vortices. This holds for gravitational, hydro-dynamical, velocity, radiation, electrical, and — as well —
for magnetic fields. Sources are the local points, from which the lines of force diverge. This includes also
virtual sources, the field seems to diverge from. The sources of the field might be located anywhere in the
space. The surface of a sphere — like any other plane — will be penetrated by the lines of force. Thus,
decentered dipoles and external field sources produce asymmetric fields on the surface, which are calculable
by a computer program with standard algorithm for the spherical field of a point-like source. The sources as
the field-generating magnitudes are the solutions of Legendre’s differential equation, the eigenvalues, which
determine the field and can be used in the calculation as parameters. The sources with their fields can also
combine to complex sources.
A magnetic dipole consists of two displaced magnetic sources of opposite charge. Its magnetic moment with
the surrounding vector field is a real physical magnitude. Magnetic dipoles are the elementary bricks of any
stationary magnetic field in complex combination of sources.

The MCD-method has been described by Gerth et al. (1997, 2003), Gerth & Glagolevskij (2001) and
applied by (Glagolevskij & Gerth (1998), Glagolevskij et al. (1998a,b). Use of this method have also made
Khalack et al. (2001a,b, 2002, 2003).

3 The parameters of the magnetic field

The term parameter is understood differently. We relate here to the mathematical sense of the parameter as
a decision quantity, which distinguishes different variants of the same general concept.

If we ask for the parameters of the magnetic field, so we have at first to look for its concept. What we
observe from the star, is its appearance. Likewise, the reduction of observational data by inversion calculation
to the distribution of the magnetic field on the star’s surface shows the appearance of the star only better,
but does not reveal the origin of the field. A model is a hypothetical concept, which has been thought up on
plausible grounds and has to be fitted to the appearance of the real object by variation of parameters and
optimizing. A parameter, however, cannot be taken from the appearance of the object because it is a defining
but not a derived magnitude.

Thus, also magnetic poles with their field strengths and coordinates can not serve as parameters for
modeling of magnetic fields with topographic structure on the star’s globe. But we do not deny that the
magnetic poles with their typical surrounding field structure can define the following computation of the
integral magnetic field as parameters. With an extended model of an obliquely rotating dipole, quadrupole,
or multipole, the phase curve and the line profiles are derived.

The parameters of the magnetic field should be taken from its physical consistence where it is coming
from: the sources and vortices, which are the generating magnitudes — suitable as parameters.

4 The generating magnitudes of the magnetic field

There are two ways to define the generation origin:

1) tracing back on the development path by inversion,

2) modeling by a reasonable hypothesis, and then compare the outcome with the expectation.

We start with the first way, which gives us certainty to identify the generating magnitudes. After that,
we use these original magnitudes as parameters for the construction of a Magnetic Star Model:

4.1 The eigen values of the magnetic field

As is known from mathematics, a function on the sphere can be described by spherical harmonics, which is
governed by the famous differential equation of Legendre:
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(1 − z2)
d2x

dz2
− 2z
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dz
+

(

n(n + 1) −
m2

1 − z2

)

x = 0. (1)

The quantities contained in this equation are:
n degree
m = – n . . . + n order index,
z = cos ϑ function of azimuth angle,

x = f(ϑ, ϕ) function of azimuth and longitude.

The solutions of equation (1) are the coefficients P m
n (ϕ, ϑ), called “associated Legendre functions”, which

are functions of the spherical coordinates ϕ (longitude) and ϑ (azimuth) at a shell with radius r = 1. Insofar,
they describe only the spherical surface of a sphere or — in case of a star — the star’s surface.

Legendre’s differential equation is known in astrophysics — by the global oscillation in a star (as the sun),
and in atomic physics — by the undulation atomic model (Schrödinger’s equation). In both cases eigen-value
solutions in the formulation by spherical harmonics play an important part. The typical combination of the
integer index n to n(n + 1) characterizes the wave or the quantum number as a discrete quantity. This is
caused by the requirement of a standing undulation of the wave running on a circle around the sphere.

We do not like to give here a complete derivation of the spherical harmonics, but it might be of interest
that Legendre’s equation (1) follows from Laplace’s equation — the homogeneous partial differential equation
for a stationary potential U

4U = 0 (2)

4 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
Laplace operator for Cartesian coordinates x, y, z

with the supposed potential function Fn in spherical coordinates

U = rnFn(ϑ, ϕ), (3)

where rn is an exponential function of the radius with the integer exponent n:

1

sin ϑ

∂ sinϑ

∂ϑ

∂Fn

∂ϑ
+

1

sin2 ϑ

∂2Fn

∂ϕ2
+ n(n + 1)Fn = 0 . (4)

We leave the complete derivation and the question “What are the generating magnitudes of the magnetic
field?” open to the interested reader. It was our concern only to point to the fact that the solution of Legendre’s
differential equation can be traced back to eigenvalues, which take on the form of potential sources located
in space.
But at first let us see, what the coefficients of the spherical harmonics are.

4.2 The magnetic field derived from spherical harmonics

With the separation concept
Fn(ϑ, ϕ) = eimϕf(ϑ) (5)

we obtain equation (1) in the formulation of the solution by Legendre’s associated spherical polynomials. In
case of a stationary potential the orthogonal vectorial components of the magnetic field Br, Bϑ, and Bϕ are
represented as an expansion
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∑
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n
∑
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n Qm
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Am
n constant coefficients

Qm
n (ϑ, ϕ) = P |m|

n (cos ϑ)cos mϕ
sin mϕ for m≥0

m<0
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These formulae1 represent a row of multipoles, whereby the (multi)pole number is the double of the degree n
of the polynomial. The number of the required constant coefficients Am

n is 2(2n + 1). The row of multipoles
starts by the dipole:

n = 1 dipole 6 constants
n = 2 quadrupole 10 constants
n = 3 sextupole 14 constants
n = 4 octupole 18 constants
. . .

The multipoles may be calculated for its special degree or summed up to the highest degree required before
truncation of the series. For practical purposes the expansion should be truncated, because the terms of
the series grow with the degree in number and computation time of the polynomials — provided the series
converges sufficiently well. The degree of the expansion, of course, determines the microstructure of the
represented field distribution on the surface of the sphere. The truncation of the expansion of multipoles,
however, is a violation of the physics of the magnetic star. All multipoles of the expansion are centered by
definition. For a decentered dipole, the polynomials up to high degrees do not disappear and must be taken
into account.

Figure 1: Mercator map of the magnetic surface field strength, calculated with Legendre spherical harmonics
(computer code written by E. Gerth).

Grey zones: iso-areas of equal intervals of field strength and altering polarity.
Top: Octupole in the equatorial belt. Only coefficient A−4

4
= 1, other Am

n = 0.
Bottom: Octupole, tilted to the equator by 40◦. Legendre coefficients:

A−4

4
= 1, A−3

4
= 3, A−2

4
= 6, A−1

4
= 9, A0

4 = 1, A1
4 = 0, A2

4 = 0, A3
4 = 0, A4

4 = 0.

But what is the physical meaning of the coefficients and the spherical polynomials for the magnetic field? —

1 Equations (6–8) represent a version reduced only to the stationary potential field, which have been placed to our disposal by
courtesy of Prof. K.-H. Rädler from the Astrophysical Institute Potsdam. The algorithm for the computation of the associated

Legendre polynomials P
|m|
n (cos ϑ) (written by Gerth) allows the calculation for any degree n and order m up to the finite accuracy

of the computer. The recursion algorithm avoids the overflow of too high numbers, which occur by the faculty procedure.
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If we want to construct a desired field distribution on the surface of the sphere, then we have to choose the
coefficients arbitrarily — fitting them by trial and error. In principal, the coefficients are the true parameters
from which the field strength on the surface is derived. This is valid, too, for the field strength on the magnetic
poles, which, therefore, cannot be used as parameters for the modeling of magnetic fields on stars. So we also
conclude that the coefficients of the expansion of spherical harmonics are not the generating magnitudes of
the stellar magnetic field.

The program for the computation and graphical representation of the field distribution on the surface of
the sphere enables one to perform numerical experiments. This was the way, the coefficients Am

n were found
for the computation of Fig.1. Variation of the coefficients by trial until fitting and comparison of the given
and the calculated maps is some kind of graphical correlation. A correlation algorithm is implemented also
in the computer program.

We used the possibility of graphical representation of the field distribution for the investigation of the
effect, the single coefficients of the spherical harmonics make on the structure of the map. We found that
the map for any coefficient can be produced also by a magnetic dipole located inside the sphere. Thus,
the spherical coefficients are identified as magnetic moments, which can be arranged in an expansion like
spherical harmonics. Such a set of magnetic dipoles, however, does not reflect the real physics and cannot
improve our knowledge about origin and generation of the magnetic field.

Spherical harmonics are an excellent mathematical calculus for the analytical description of functions on
the surface of the sphere. Its awkward complexity, however, makes comprehension, requirement, and practical
application difficult, so that we look for some appropriate simplifications.

Let us, therefore, go over from Legendre’s spherical functions to the better-known case of trigonometrical
functions. Then the two-dimensional distribution on the surface of the sphere with coordinates ϑ, ϕ is reduced
to an one-dimensional oscillation as a process in time t.

4.3 The oscillation equation compared to Legendre’s equation

If we specialize Legendre’s differential equation (1) for a constant azimuth angle x = cos ϑ = const, we get
the oscillation equation for an oscillating ring with eigen frequencies of the overtone row.

We go a step further and derive from Legendre’s equation (1) immediately the differential equation for a
single mechanical oscillator, replacing all in this case constant magnitudes by the appropriate mechanical ones

M =⇒ 1 - z2 mass,
R =⇒ z friction resistance,

D =⇒ n(n + 1) - m2

1−x2
direction force ,

then we have:

M
d2x

dt2
− 2R

dx

dt
+ Dx = 0. (9)

With the functional concept for a solution

x = aeλt (10)

we get two possible eigen-solutions:

λ1 = −
R

M
+

√

D

M
−

R2

M2
λ2 = −

R

M
−

√

D

M
−

R2

M2
. (11)

The general integral of the differential equation is the sum of all solutions, which is in the present case a
damped oscillation, represented as a trigonometric row with two terms of amplitudes a and b

x = e−
R

M
t(aeiωt + be−iωt). (12)

The solution is determined by the eigen frequency:

ω =

√

D

M
−

R2

M2
. (13)
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The generating magnitude of the oscillator, which determines the eigen frequency ω, is obviously D/M . The
damping term R/M varies slightly the eigen frequency.

Numerous oscillators — as we have in a musical instrument like a piano — superpose their oscillations. A
triad, for instance, consists of three eigen frequencies. If the sound of the triad is analyzed by Fourier analysis,
then it would be traced back to the three eigen frequencies and its generating magnitudes — mass, length,
and tension of the string.

But also the reversal is possible: if we know the generating magnitudes (as an instrument builder does),
then we have the eigen frequencies already in advance and can construct and overlay all single oscillations
to a sound like the triad. This is the synthetic way — as we do by constructing magnetic fields out of their
potential sources.

The analogy between spherical harmonics and trigonometric functions is surprisingly close and can even
be used for many practical applications. We list here some common properties:

1) formulation as differential equations;

2) reduction to eigen values;

3) solution as expansion of functional terms (functions of eigen values — eigen functions);

4) linearity and orthogonality;

5) linear superposition;

6) transformation to the complex projection space (Laplace-Transformation);

7) inverse analysis procedures

a) Fourier analysis,

b) “Legendre” analysis.

5 The elementary field configuration of sources and vortices

The MCD-method uses the intrinsic eigen values as the original generating magnitudes positioned in space,
from which the magnetic field is derived. Usually, a complex field configuration is a derivation of a combination
of eigen values, which have as solutions of a differential equation the property of linear aggregates.

Since we know that a complex field is a linear superposition of numerous fields, we can reduce the field to
its elementary constituents. Therefore, we investigate a single eigen value as a generator for an elementary
field in space. We can expect that such an elementary field and its analytical description has the utmost
simple form suitable for generalization and programming on a computer.

The straightforward calculation is the synthetic way to build any field configuration out of the generating
magnitudes.

5.1 Derivation of the magnetic monopole field from its source

The origin point of the field is located in spherical coordinates ϕ — longitude, δ — latitude, r — radius-
fraction (the distance of the point from the center of the sphere in fractions of its radius R). The three
orthogonal components Br, Bϕ, Bδ of the field vector in the center of the surface element 4S are given by
equations (18–20).
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Figure 2: Geometry of a point-like source in a sphere. The star is orientated in the Cartesian
coordinate system with its rotation axis coinciding with the z-coordinate, the observer looks at by
the inclination angle i.

In Cartesian coordinates x, y, z we have with the unity vectors i, j, k the gradient U (Gerth & Glagolevskij
2001, Gerth et al. 1999). From the scalar potential U the field strength is derived by the linear differential
operator gradient

B = −gradU. (14)

The gradient is a vector of 3 components, which span a space with 3 orthogonal unity vectors as Cartesian
or spherical coordinates

gradU =
∂U

∂x
i +

∂U

∂y
j +

∂U

∂z
k. (15)

Likewise, we have for each point of the sphere in the polar orthogonal system of radius r, longitude ϕ, and
latitude δ the gradient

gradU =
∂U

∂r

dr

dx
i +

∂U

∂r

dr

dy
j +

∂U

∂r

dr

dz
k. (16)

If we consider only the one-dimensional case using polar coordinates with radius r and simplify the constant
with Q to C = − Q

4π
, then the potential

U = −
C

r
yields the gradient

dU

dr
=

C

r2
. (17)

The magnetic monopole charge is located anywhere inside (or outside) the star and produces a magnetic field
as shown in Fig. 3.

The differential quotients that give the gradient along the 3 orthogonal polar coordinates are:

Br = ∂U/∂r = (C/r3)[cos δ(cos ϕ + sin ϕ) + sin δ], (18)

Bϕ = ∂U/∂ϕ = (aC/r3) cos δ(cosϕ − sin ϕ), (19)

Bδ = ∂U/∂δ = (aC/r3)[cos δ − sin δ(sin ϕ + cosϕ)]. (20)
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Figure 3: Map and globe of the field structure of an eccentric monopole on the surface of a sphere.
The field of a monopole is determined by four parameters (three local coordinates x, y, z and
charge Q). A monopole of unit charge is located at fractional radius r = 0.5, longitude ϕ = 90◦,
and latitude δ = 45◦.

These equations are the basic relations for the calculation of the magnetic field strength distribution
over the star’s surface for a single monopole. The differential quotients represent the 3 coordinates of the
magnetic field at the surface of the star, which constitute the field vector. The mapping of the magnetic
surface structure relates to these values.

5.2 Construction of a magnetic vortex field

Like the gradient for the magnetic dipole, the calculation of the field strength for the magnetic vortex is
based on the linear differential operator curl.

A vortex (Gerth et al. 2003) constitutes the closed magnetic lines of force around an axial vector with origin
at spherical coordinates r, ϕ, δ and direction determined by the spatial motion of an electrical charge through
Cartesian space. The three vector components of the electrical current I, with origin at Cartesian coordinates
x, y, z on the sphere with radius r, can be written in spherical coordinates also with three parameters: the
magnitude of the current I, and λ, the horizontal component and ϑ, the azimuthal component.
The field strength of a vortex is derived by the vectorial differential operator curl:

curlI =

(

∂Iz
∂y

−
∂Iy
∂z

)

i +

(

∂Ix
∂z

−
∂Iz
∂x

)

j +

(

∂Iy
∂x

−
∂Ix
∂y

)

k, (21)

i, j, k Cartesian unit vectors; U potential, I electrical current with components Ix, Iy , Iz .

Figure 4: Map and globe of the field of an eccentric vortex on the surface of a sphere. Solid lines:
positive region; dotted lines: negative region. The field of a vortex is determined by six parameters
(3 local, 3 electric). The fractional radius is r = 0.5, the longitude ϕ = 90◦, the latitude is δ = 45◦

and Ix = Iz = 0, Iy = 1.

The partial differential quotients of the Cartesian components of the current, Ix, Iy , Iz , are calculated in
the same manner as the differential quotients of the potential U corresponding to equation (5) with terms
like equations (18–20).
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We do not pursue further the construction of a magnetic field by vortices, because the stationary field
is built up only by the gradient of the potential. Here we state this possibility for completeness. Evaluating
Maxwell’s equations as for the dynamo theory (Krause & Rädler 1980, Rädler 1995), the solution of the
transformed differential equation of continuity leads to sources and vortices as eigenvalues.

In some cases, the computation of fields with closed lines of force might be convenient, for instance,
modeling the magnetic loops in the solar atmosphere and the corona.

In any case, we have to add the vortices with their parameters to the generating magnitudes, from which
a magnetic field is derived.

6 Superposition of magnetic fields of numerous sources

The possibility of linear superposition of magnetic fields can be taken as lucky coincidence. All complex field
configurations are composed of elementary field generators requiring for the computation the same standard
algorithms, which are run repeatedly for all positions in space.

6.1 Virtual sources

In our study we assume magnetic field sources to be point-like. The magnetic lines of force around a moving
electrical charge — an electric current — are closed, after the famous law of Biot and Savart. Magnetic
charges concentrated in points, however, seem to violate physics — an objection, raised to the authors
frequently.

We mentioned already, that the assumption of point-like sources is a requirement of the computer program
used for the calculation. But are magnetic charges as sources for the magnetic field wrong at all?

The magnetic field, of course, obeys the physical laws of all fields with common properties, so that we
state: All fields originate from sources and vortices.

If we trace back the lines of force in any volume element of space by tangential elongation to their crossing
point, then we hit a virtual source, where the lines seem to come from. This is in analogy to the virtual
light sources in optics, which we see behind a mirror or a lens. In case of a monopole field the situation
is clear: all lines of force are directed on straight radial lines to the center of a sphere, so that virtual and
real sources coincide. The lines of force converge to the center and diverge from the center. Mathematically,
this geometrical constellation is described by the differential operator divergence, which gives the balance of
incoming and outgoing lines of force through the closed surface of a volume element. If a source is contained
within the volume element, then the divergence does not disappear,

divB 6= 0 . (22)

For a sphere, the convergence of the lines of force to the center is quite clear. However, equation (22) holds
also for every closed surface around the source, also even for a source decentered in the sphere. Moreover,
equation (22) holds for many sources enclosed in the volume — as a consequence of the superposition theorem
of solutions of differential equations.

So we can take the expressions divergence and its counterpart convergence word for word: the lines of
force seem to diverge from sites, whose real existence is not known in advance, so that we can call them
generally virtual sources.

6.2 The magnetic dipole

Combinations of magnetic sources — so as the magnetic moment of a magnetic dipole — are also generating
magnitudes, from which a complex field is derived. In analogy to an electric dipole, we construct a magnetic
dipole by two magnetic charges Q1 = Q and Q2 = –Q of opposite polarity in a distance l from each other.
The product

M = Ql (23)

is an axial vector with a surrounding characteristic magnetic vector field, the magnetic moment. We introduce
here the common case of a magnetic moment with a distance l > 0. The infinitesimal case l → 0 does not
change the value of the magnetic moment, the magnetic charges Q1 and Q2, however, would grow to infinity.
This is the mathematical dipole, the field of which is assessed as the normal dipole field.

The magnetic dipole is in any case a real physical quantity. So, also a rigid compound of two oppositely
charged sources, like a rod magnet with a north pole and a south pole, is a magnetic dipole. A steel magnet
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is composed of micro-magnets with atomic dimensions. The atomic magnetic moment (Bohr’s magneton)
produces a dipole field by the orbital movement of the electric charge of the electron around the nucleus. In
macro dimensions also an electric current, circulating in a loop, makes a dipole field with a magnetic moment.
The difference to the two-sources-dipole is only the inner structure, where all field lines penetrate the plane
spanned by the loop without crossing each other. The narrower the loop, or the closer the two magnetic
charges, the more both variants of dipole fields coincide with growing distance.

Figure 5: Demonstration of a dipole with virtual sources.
An electric current flowing through a loop produces a magnetic field configuration with closed

lines of force (solid lines), which penetrate the plane of the loop without crossing. The diverging
lines of force (dotted lines) can be traced back to their origin as if it was a dipole with virtual

sources — in analogy to virtual images in optics.

Fig. 5 demonstrates schematically the structure of the lines of force for a dipole of a circulating current
compared with the corresponding dipole consisting of a couple of magnetic charges. The distance of the charges
and the diameter of the loop have the same dimensions, within which the structures of the current-based
and the charge-based dipoles differ most conspicuously. For a replacement, this region should be excluded.
The lines of force, coming from the outer region, are directed on regular circles to its crossing point where
they are focused in the sites of the virtual sources in analogy to optical image projection. The focussing to
the virtual source might not be sharp and can have a distribution like a caustic in optics. Then we take the
point of maximal concentration of field lines as the best approximation of the magnetic dipole modelled by
magnetic charges. The difference between the two modes of magnetic dipoles disappears for dimensions of
the electrical circuit or the distance of the charges small to the radius of the field strength plane. This is
obvious for atomic dimensions of elementary magnets viewed in macro-cosmos.

In Fig. 6 the cartographic map and globes in four phases are shown of a central magnetic dipole derived
from two separated magnetic charges of opposite polarity. The sources are arranged symmetrical to the center
as a central dipole. Only for dipoles with axes through the center the coordinates of the magnetic poles on the
surface ϕ, δ agree with those of the sources, which is not fulfilled for anyhow transversely decentered dipoles.
The calculation of the magnetic surface field by spherical harmonics is confined only to central dipoles.
Generally, the magnetic field strength — including the poles — is derived from the generating magnitudes:
the magnetic sources.

The magnetic dipole in any form can be regarded as an elementary unit defined by the vectorial magnetic
moment with its magnetic field. Thus, also the magnetic dipole moment is a generating magnitude itself,
which is the elementary brick to build any magnetic body by composing the magnetic moments.
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Figure 6: Mercator map with globes to the phases 0.25, 0.5, 0.75, and 1.00 of the magnetic field
with the surface elements arranged as a matrix. Parameters:

Charge Longitude Latitude Radius-fraction
Q1 = +1 ϕ1 = 90o δ1 = +45o r1 = 0.1
Q2 = – 1 ϕ2 = 270o δ2 = – 45o r2 = 0.1

The magnetic charge Q and the radius r are given in relative units.

6.3 Magnetic multipoles

Magnetic sources can formally be distributed in space arbitrarily. However, to preserve the connection to
physics, at least the condition

i
∑

= 0 (24)

has to be respected. Moreover, the coordination of pairs with opposite but absolutely equal charges like pairs
should be kept to. So we can construct all multipoles by spatial arrangements of dipoles.

The magnetic dipole moment is an axial vector and obeys all rules of vector algebra. Combination of
dipoles to multipoles is vector addition of the magnetic moments. A quadrupole can be combined by two
dipoles. Two central dipoles yield again a central dipole with a magnetic moment following from the resultant
of a vector parallelogram. The resultant poles lie between the poles of the summand moments. The effect of
addition of magnetic moments on the map is calculated and demonstrated graphically by Gerth & Glagolevskij
(2002).

Nevertheless, the topographic structure of resultant dipole field gives no information about the vector
summands, because the poles are areas of the surface field, and therefore, they are derived from the generating
magnetic moments.

6.4 Super-multipoles

The superposition of magnetic fields is a possibility to sum up numerous fields using for the calculation
repeatedly the same standard algorithms.
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Correspondingly to the magnetic charges the elementary magnetic dipoles may be arranged arbitrarily
within the stellar body by position and by direction. The combination of elementary dipoles enables one to
model different magnetic bodies: rod, cubic, cylinder, ellipsoid etc. In principle, this is valid also for macro-
magnets and elementary (atomic) micro-magnets. The density of elementary dipoles determines, of course,
the required computation time. The linear superposition allows also to divide the ensemble into subgroups.
The possibilities are infinite. We will present here only an example for a field structure, which deviates from
the normal dipole field. Especially interesting is the field of an area of a circle, set with elementary dipoles
and forming a “magnetic sheet”.

Figure 7: “Super-multipole” of 80 dipoles as double layer of positive and negative monopoles. The
grating looks pillow-like and empty in the middle because of the shifting of the charges. All dipoles
have equally two oppositely charged field sources. Each dipole has a distance of the 2 point-like
charges of 0.01 R (160 points). The dipoles are set within the circle r = 0.5 R in a grating of
10× 10.

Figure 8: Mercator-map and globe of the circular magnetic sheet approximated by 80 dipoles,
represented with the cartographic coordinates of the sources ⊕ 	 and iso-magnetic lines. The
sheet lies as a circular disk in the x, y-plane of the star with half of the stellar radius in the center
— tilted by 30◦ to the x-axis and to the y-axis.

With an arrangement of dipoles as in Fig.7 we can construct a “super-multipole” as an entirety of prede-
termined form, using elementary magnetic dipoles like “bricks” for a building. The resulting field structure
as shown in Fig.8 is generated by and derived from the magnetic sheet. Such a magnetic field as that of a
sheet is produced by a circularly streaming electric current, as we can assume circling in the star both in
cases of a stellar dynamo and of a frozen-in relict magnetism.

We come back to the philosophy of the MCD-method relating to a definite theorem of the potential theory,
according to which any field configuration is produced by superposition of the fields of numerous point-like
sources.

7 Conclusion

The discussion on two current versions of modeling stellar magnetic fields concerns the physical foundation
and the origin for assessment and practical use. The requirement of reasonable parameters for calculation
rises the rather philosophical question: What was first — the magnet or the magnetic field? We tried to
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investigate the causal connection between generating and derived magnitudes by comparison of the two
methods of magnetic modeling. Therefore, we outlined their physical and mathematical foundation briefly
and looked for essential common and distinguishing characteristics.

Despite both methods represent different aspects of the item, they have an intrinsic logical connection
without any contradiction. The link between the methods are the eigenvalues, which are seen from one side
as solutions of Legendre’s differential equation, and from the other side as the generating magnitudes. The
decision, which method is to be applied, depends on the purpose. There are good prospects to elaborate a
common theory and to bring both methods together. In any case, the development has not come to an end
yet, and the possibilities of application are still not exhausted.
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